Ph135 - Problem Set 7

December 9, 2019

Problem 1

The Hamiltonian is given by

\[\hat{H} = \sigma_z v \hat{p} + g \sigma_x \cos \frac{\gamma}{2} + g \cdot \text{sgn}(x) \sigma_y \sin \frac{\gamma}{2}. \]

(1)

We find its localized mode, we use the ansatz

\[\Psi = \begin{pmatrix} u \\ w \end{pmatrix} e^{-|\kappa|x}. \]

(2)

Substitute into the equation above, we get

\[\begin{align*}
 i\kappa v \cdot \text{sgn}(x)
 \left(\begin{array}{c} u \\
 -w
 \end{array} \right)
 + g \cos \frac{\gamma}{2}
 \left(\begin{array}{c} w \\
 u
 \end{array} \right)
 + g \sin \frac{\gamma}{2} \cdot \text{sgn}(x)
 \left(\begin{array}{c} -iw \\
 iu
 \end{array} \right)
 = E \begin{pmatrix} u \\ w \end{pmatrix}.
\end{align*} \]

(3)

The imaginary part gives

\[\kappa v \left(\begin{array}{c} u \\
 -w
 \end{array} \right)
 + g \sin \frac{\gamma}{2} \left(\begin{array}{c} w \\
 -u
 \end{array} \right)
 = 0, \]

(4)

The nontrivial solutions are given by

\[\begin{align*}
 u &= w, \quad \kappa = \frac{g}{v} \sin \frac{\gamma}{2}, \quad \text{if } \frac{g}{v} \sin \frac{\gamma}{2} \geq 0 \\
 u &= -w, \quad \kappa = -\frac{g}{v} \sin \frac{\gamma}{2}, \quad \text{otherwise}.
\end{align*} \]

(5)

Plug the solutions into the real part of the equation, we find that

\[g \cos \frac{\gamma}{2} \left(\begin{array}{c} v \\
 u
 \end{array} \right) = E \begin{pmatrix} v \\ u \end{pmatrix}, \]

(6)

so the energy of the localized modes are given by

\[\begin{align*}
 E &= g \cos \frac{\gamma}{2}, \quad \text{if } \frac{g}{v} \sin \frac{\gamma}{2} \geq 0 \\
 E &= -g \cos \frac{\gamma}{2}, \quad \text{otherwise}.
\end{align*} \]

(7)

To summarize, when \(g \sin (\gamma/2)/v \geq 0 \), the localized mode is given by

\[\Psi(x) = \frac{v}{\sqrt{2g \sin (\gamma/2)}} e^{-g \sin (\gamma/2)|x|/v} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \]

(8)

with energy

\[E = g \cos \frac{\gamma}{2}. \]

(9)
When \(g \sin (\gamma/2)/v < 0 \), the localized mode is given by

\[
\Psi(x) = \frac{v}{\sqrt{2g \sin (\gamma/2)}} e^{g \sin (\gamma/2)x/v} \begin{pmatrix} 1 \\ -1 \end{pmatrix},
\]

with energy

\[
E = -g \cos \frac{\gamma}{2}.
\]

Problem 2

For \(H = \sigma_z v \hat{p} \), the right-moving electrons have \(E_R = vp \), and the left-moving electrons have \(E_L = -vp \). The band structure is as illustrated in Figure 1. The number of uncompensated states is therefore given by

\[
N = \frac{L}{2\pi} \int_{-eV/(2\hbar v)}^{eV/(2\hbar v)} dk = \frac{eVL}{2\pi \hbar v} = \frac{eVL}{hV}.
\]

The charge density is

\[
e \frac{N}{L} = \frac{e^2 V}{hV}.
\]

Therefore the current is given by the velocity times the density, which is

\[
j = \frac{e^2 V}{h},
\]

and the conductance is

\[
\sigma = \frac{j}{V} = \frac{e^2}{h}.
\]

![Figure 1: Illustration of the band structure](Image)